Salva tu Playa

La playa de los Llanos está junto al Palmetum y al Parque Marítimo de Santa Cruz de Tenerife capital.

Salva tu Playa

Por playas más limpias y cuidadas, sin ruidos ni molestias.

Salva tu Playa

Por la recuperación de playas.

Salva tu Playa

Recogida de firmas online . Apoya y podrás defenderla mañana.

Por la recuperación de accesos al baño y el disfrute completo del mar

Recogida de firmas online. Apoya y defiende tu playa. Por una playa para todos.

lunes, 26 de noviembre de 2018

Ernst Frankel, shipping expert and professor emeritus of ocean engineering, dies at 95

Ernst G. Frankel MME ’60, SM ‘60, professor emeritus of ocean engineering who served on MIT’s faculty for 36 years, passed away on Nov. 18 at the age of 95. Frankel, who was also a former professor of management at the Sloan School of Management, was a leading expert in shipping, shipbuilding, and port management.

Born in 1923 in Beuthen, Germany, Frankel served in the Royal Navy during World War II. He also served in the Israeli navy in 1948. After the war, he pursued his bachelor’s degree in marine engineering at London University. He worked for eight years as chief engineer of Zim Navigation Company in Israel, before moving to America and enrolling in MIT to study ocean engineering.

He graduated MIT in 1960 with a master’s of science in ocean engineering and a master’s of marine mechanical engineering. In his graduate thesis, he examined the effects of surge, pitch, and heave on semisubmerged displacement vessels in regular waves. After graduating, he joined the faculty of the then-named Department of Naval Architecture and Marine Engineering. He remained on the faculty until his retirement in 1995.

Throughout his career, Frankel authored 21 books and over 700 academic papers. In 1971, he was named head of the Interdepartmental Commodity Transportation and Economic Development Laboratory, which he also helped establish.

In addition to his work at MIT, Frankel acted as an advisor to a number of governments, international organizations, and shipping companies. He was a member of the Board of Directors of Neptune Orient Lines, one of the world’s largest shipping companies, as well as an advisor to the Panama Canal Authority. He also served as a port, shipping, and aviation advisor to the World Bank, a senior advisor on ports to the secretary general of the International Maritime Organization, and a member of the U.N.-sponsored World Maritime University’s Visiting Committee.

Frankel received a number of accolades throughout his career including a Gold Medal from the government of Great Britain in 1956. He was also a member of the Society of Naval Architects and Marine Engineers and the Transportation Science Section Council.

In the 1970s and 1980s, Frankel expanded his expertise beyond ocean engineering and naval architecture, setting his sights on business and economics. He earned a master’s of business administration in operations management and a doctor of business administration in systems management from Boston University. He also received a PhD in transport economics from the University of Wales in 1985. 

This foundation in economics and business management led to a dual appointment in the Sloan School of Management. In addition to acting as professor of ocean engineering, in the early 1990s Frankel was named a professor of management at Sloan. 

After his retirement in 1995, Frankel remained active in both teaching and research. When Elon Musk announced the Hyperloop concept in 2013, Frankel received some unexpected media attention for research he conducted two decades prior. In the early 1990s, Frankel led a team that designed a vacuum tube which could possibly enable travel between Boston and New York City in 40 minutes — a concept similar to what Musk has been hoping to achieve.

In an interview with the BBC in 2014, Frankel said, “The advantage of a vacuum tube is that you can achieve high speeds. … We built a half-mile long tube at the playing fields of MIT, evacuated it, and then shot things through it in order to measure what sort of velocities we could obtain.”

Funeral services were held in Brookline, Massachusetts, on Nov. 20.



from MIT News - Oceanography and ocean engineering https://ift.tt/2DYobv3

miércoles, 21 de noviembre de 2018

Building the ultimate record of the ocean

Before the advent of modern observational and modeling techniques, understanding how the ocean behaved required piecing together disparate data — often separated by decades in time — from a handful of sources around the world. In the 1980s, that started to change when technological advancements, such as satellites, floats, drifters, and chemical tracers, made continuous, mass measurements possible.

Still, the resulting new datasets often existed independently of each other, obscuring the big picture of how the ocean circulates, transfers heat, affects climate, stores carbon, and more. That's why Carl Wunsch, professor emeritus of physical oceanography in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS) and member of the EAPS Program in Atmospheres, Oceans and Climate (PAOC), started spearheading an endeavor to reveal that big picture nearly 20 years ago.

Following on the heels of the World Ocean Circulation Experiment (WOCE), Wunsch founded a consortium that sought to combine global ocean datasets with state-of-the-art circulation models. Only with this combination of observation and theory could scientists fully understand the physical and dynamical state of the ocean, and thus its role in climate, Wunsh wrote for the journal Oceanography in 2009. The consortium, which came to be called Estimating the Circulation and Climate of the Ocean (ECCO), was a massive undertaking, including an international network of researchers and governmental bodies to exchange and analyze billions of ocean observations taken from all corners of the globe.

“It was like building a large telescope,” Wunsh says. “That’s what ECCO has been.”

Today, ECCO is largely heralded as the foundational framework for understanding the behavior of the entire ocean for decades to come. Last month, Wunsch and his collaborators published a progress report of sorts on ECCO efforts in The Bulletin of the American Meteorological Society, where they detail the best record of ocean circulation to date: a 20-year average of ocean climate and circulation, called a climatology, that obeys the laws of fluids and includes all of the data collected on the ocean from around the world since 1992.

In the article, “A Dynamically Consistent, Multivariable Ocean Climatology,” the authors outline recent updates to ECCO and explain the deep trove of information that makes it possible, including observations from all of the altimetric satellites that have flown since 1992; temperature and salinity data from depth sensors, expendable bathythermographs, and Argo profiles; and — perhaps most fascinating — data collected via sensors on deep-diving elephant seals.

With an immense volume of data — several billion observations — Wunsch and his collaborators write that the problem soon became how to combine the massive datasets and fit them to a model that would represent a three-dimensional time-evolving ocean over decades. Fortuitously, during ECCO’s initiation, a parallel effort at MIT was underway, led by EAPS Cecil and Ida Green Professor of Oceanography John Marshall, to develop a new ocean general circulation model, called the MIT General Circulation Model, which Wunsch adapted to become the dynamical engine of ECCO.

Detailed understanding of the accuracies and precisions of this methodology, including at least some approximation to an error estimate on all scales, is “an unglamorous but essential activity,” Wunsch says.

Unglamorous as the methodology may be, the results are elegant solutions that adequately fit almost all types of ocean observations and that are, simultaneously, consistent with the model. These solutions are now being used to inform a wide range of research, ranging from ocean variability, biological cycles, coastal physics, and geodesy. Some studies have involved more immediate applications, like predicting physical flow and mixing fields, which influence the ecosystems of lobsters and cod. Others offer better resolution into big-picture issues, like ocean carbon absorption, sea level rise, climate forecasting, and paleoclimate. 

With ECCO, analyzing these problems is no longer confined to the use of single datasets, and researchers are freed from worries that basic properties such as energy conservation are violated in the analysis, says Wunsch.

“It’s a luxury to think about the long term,” he says. But, he adds, it is a scientific and social necessity and requires decades more data to go beyond 20 to 30 years.

Today the ECCO effort stands as proof that model-data combinations looking at decadal and longer time scales are possible, says Wunsch. But the consortium’s goals don’t end there.

“We want this climatology to be used for a greater variety of purposes, and we invite the use and critique of the result by the wider community,” he says. All of the data and the model are publicly available, Wunsch says, and if someone is interested, all they have to do is ask for help.

Wunsch, who is retired but still has an office in the Green Building at MIT, says gladly that his former students and group members have now taken over the ECCO effort. In fact, the article co-authors were all once Wunsch’s advisees: Associate Professor Patrick Heimbach of the University of Texas at Austin, Principal Scientist Ichiro Fukumori of the NASA Jet Propulsion Laboratory, and Rui M. Ponte of Atmospheric and Environmental Research (AER), Inc. 

Wunsch hopes that ECCO’s spread to the next generation of researchers will make it more resistant to fickle political and economic trends. Because understanding how the ocean is behaving under a changing climate — and how it is likely to change in the future — requires uninterrupted observations of the immense complexity of ocean circulation.

“There can’t be any gaps in data,” said Wunsh. “Gaps are deadly.”



from MIT News - Oceanography and ocean engineering https://ift.tt/2Qesfxc

martes, 6 de noviembre de 2018

Oceanographers produce first-ever images of entire cod shoals

For the most part, the mature Atlantic cod is a solitary creature that spends most of its time far below the ocean’s surface, grazing on bony fish, squid, crab, shrimp, and lobster — unless it’s spawning season, when the fish flock to each other by the millions, forming enormous shoals that resemble frenzied, teeming islands in the sea.

These massive spawning shoals may give clues to the health of the entire cod population — an essential indicator for tracking the species’ recovery, particularly in regions such as New England and Canada, where cod has been severely depleted by decades of overfishing.

But the ocean is a murky place, and fish are highly mobile by nature, making them difficult to map and count. Now a team of oceanographers at MIT has journeyed to Norway — one of the last remaining regions of the world where cod still thrive — and used a synoptic acoustic system to, for the first time, illuminate entire shoals of cod almost instantaneously, during the height of the spawning season.

The team, led by Nicholas Makris, professor of mechanical engineering and director of the Center for Ocean Engineering, and Olav Rune Godø of the Norwegian Institute of Marine Research, was able to image multiple cod shoals, the largest spanning 50 kilometers, or about 30 miles. From the images they produced, the researchers estimate that the average cod shoal consists of about 10 million individual fish.

They also found that when the total population of cod dropped below the average shoal size, the species remained in decline for decades.

“This average shoal size is almost like a lower bound,” Makris says. “And the sad thing is, it seems to have been crossed almost everywhere for cod.”

Makris and his colleagues have published their results today in the journal Fish and Fisheries.

Echoes in the deep

For years, researchers have attempted to image cod and herring shoals using high-frequency, hull-mounted sonar instruments, which direct narrow beams below moving research vessels. These ships traverse a patch of the sea in a lawnmower-like pattern, imaging slices of a shoal by emitting high-frequency sound waves, and measuring the time it takes for the signals to bounce off a fish and back to the ship. But this method requires a vessel to move slowly through the waters to get counts; one survey can take many weeks to complete and typically samples only a small portion of any particular expansive shoal, often completely missing shoals between survey tracks and never capturing shoal dynamics

The team made use of the Ocean Acoutic Waveguide Remote Sensing, or OAWRS system, an imaging technique developed at MIT by Makris and co-author Purnima Ratilal, which emits low-frequency sound waves that can travel over a much wider range than high-frequency sonar. The sound waves are essentially tuned to bounce off fish, in particular, off their swim bladder — a gas-filled organ that reflects sound waves — like echoes off a tiny drum. As these echoes return to the ship, researchers can aggregate them to produce an instant picture of millions of fish over vast areas.

Making passage

In February and March of 2014, Makris and a team of students and researchers headed to Norway to count cod, herring, and capelin during the height of their spawning seasons. They towed OAWRS aboard the Knorr, a U.S. Navy research vessel that is operated by the Woods Hole Oceanographic Institution and is best known as the ship aboard which researchers discovered the remnants of the Titanic.

The ship left Woods Hole and crossed the Atlantic over two weeks, during which time the crew continuously battled storms and choppy winter seas. When they finally arrived at the southern coast of Norway, they spent the next three weeks imaging herring, cod, and capelin along the entire Norwegian coast, from the town of Alesund, north to the Russian border.

“The underwater terrain was as treacherous as the land, with submerged seamounts, ridges, and fjord channels,” Makris recalls. “Billions of herring actually would hide in one of these submerged fjords near Alesund during the daytime, about 300 meters down, and come up at night to shelves about 100 meters deep. Our mission there was to instantaneously image entire shoals of them, stretching for kilometers, and sort out their behavior.”

A window through a hurricane

As they moved up the Norwegian coast, the researchers towed a 0.5-kilometer-long array of passive underwater microphones and a device that emitted low-frequency sound waves. After imaging herring shoals in southern Norway, the team moved north to Lofoten, a dramatic archipelago of sheer cliffs and mountains, depicted most famously in Edgar Allen Poe’s “Descent into the Maelstrom,” in which the poet made note of the region’s abundance of cod.

To this day, Lofoten remains a primary spawning ground for cod, and there, Makris’ team was able to produce the first-ever images of an entire cod shoal, spanning 50 kilometers.

Toward the end of their journey, the researchers planned to image one last cod region, just as a hurricane was projected to hit. The team realized there would be only two windows of relatively calm winds in which to operate their imaging equipment.

“So we went, got good data, and fled to a nearby fjord as the eye wall struck,” Makris recalls. “We ended with 30-foot seas at dawn and the Norwegian coast guard, in a strangely soothing young voice, urging us to evacuate the area.” The team was able to image a slightly smaller shoal there, spanning about 10 kilometers, before completing the expedition.

On the brink

Back on dry land, the researchers analyzed their images and estimated that an average shoal size consists of about 10 million fish. They also looked at historical tallies of cod, in Norway, New England, the North Sea and Canada, and discovered an interesting trend: Those regions — like New England  — that experienced long-lasting declines in cod stocks did so when the total cod population dropped below roughly 10 million — the same number as an average shoal. When cod dropped below this threshold, the population took decades to recover, if it did at all.

In Norway, the cod population always stayed above 10 million and was able to recover, climbing back to preindustrial levels over the years, even after significant declines in the mid-20th century. The team also imaged shoals of herring  and found a similar trend through history: When the total population dropped below the level of an average herring spawning shoal, it took decades for the fish to recover.

Makris and Godø hope that the team’s results will serve as a measuring stick of sorts, to help researchers keep track of fish stocks and recognize when a species is on the brink.

“The ocean is a dark place, you look out there and can’t see what’s going on,” Makris says. “It’s a free-for-all out there, until you start shining a light on it and seeing what’s happening. Then you can properly appreciate and understand and manage.” He adds “Even if field work is difficult, time consuming, and expensive, it is essential to confirm and inspire theories, models, and simulations.”

This research was supported, in part, by the Norwegian Institute of Marine Research, the Office of Naval Research, and the National Science Foundation.



from MIT News - Oceanography and ocean engineering https://ift.tt/2D6HFfT